久久久精品一区ed2k-女人被男人叉到高潮的视频-中文字幕乱码一区久久麻豆樱花-俄罗斯熟妇真实视频

Python中Pandas庫有什么用

這篇文章主要介紹了Python中Pandas庫有什么用,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。

成都網(wǎng)站建設哪家好,找創(chuàng)新互聯(lián)!專注于網(wǎng)頁設計、網(wǎng)站建設公司、微信開發(fā)、微信小程序開發(fā)、集團成都企業(yè)網(wǎng)站建設等服務項目。核心團隊均擁有互聯(lián)網(wǎng)行業(yè)多年經(jīng)驗,服務眾多知名企業(yè)客戶;涵蓋的客戶類型包括:格柵板等眾多領域,積累了大量豐富的經(jīng)驗,同時也獲得了客戶的一致好評!

Pandas庫是Python中最流行的數(shù)據(jù)操作庫。受到R語言的frames啟發(fā),它提供了一種通過其data-frame API操作數(shù)據(jù)的簡單方法。
0           1          
了解Pandas          

要很好地理解pandas,關鍵之一是要理解pandas是一系列其他python庫的包裝器。主要的有Numpy、SQL alchemy、Matplot lib和openpyxl。

data frame的核心內(nèi)部模型是一系列NumPy數(shù)組和pandas函數(shù)。

pandas利用其他庫來從data frame中獲取數(shù)據(jù)。例如,SQL alchemy通過read_sql和to_sql函數(shù)使用;openpyxl和xlsx writer用于read_excel和to_excel函數(shù)。而Matplotlib和Seaborn則用于提供一個簡單的接口,使用諸如df.plot()這樣的命令來繪制data frame中可用的信息。

0           2          
Numpy的Pandas-高效的Pandas          

您經(jīng)常聽到的抱怨之一是Python很慢,或者難以處理大量數(shù)據(jù)。通常情況下,這是由于編寫的代碼的效率很低造成的。原生Python代碼確實比編譯后的代碼要慢。不過,像Pandas這樣的庫提供了一個用于編譯代碼的python接口,并且知道如何正確使用這個接口。

向量化操作

與底層庫Numpy一樣,pandas執(zhí)行向量化操作的效率比執(zhí)行循環(huán)更高。這些效率是由于向量化操作是通過C編譯代碼執(zhí)行的,而不是通過本機python代碼執(zhí)行的。另一個因素是向量化操作的能力,它可以對整個數(shù)據(jù)集進行操作,而不只是對一個子數(shù)據(jù)集進行操作。

應用接口允許通過使用CPython接口進行循環(huán)來獲得一些效率:

df.apply(lambda x: x['col_a'] * x['col_b'], axis=1)
     

但是,大部分性能收益可以通過使用向量化操作本身獲得,可以直接在pandas中使用,也可以直接調用它的內(nèi)部Numpy數(shù)組。

03
通過DTYPES高效地存儲數(shù)據(jù)          

當通過read_csv、read_excel或其他數(shù)據(jù)幀讀取函數(shù)將數(shù)據(jù)幀加載到內(nèi)存中時,pandas會進行類型推斷,這可能是低效的。這些api允許您明確地利用dtypes指定每個列的類型。指定dtypes允許在內(nèi)存中更有效地存儲數(shù)據(jù)。

df.astype({'testColumn': str, 'testCountCol': float})
     

Dtypes是來自Numpy的本機對象,它允許您定義用于存儲特定信息的確切類型和位數(shù)。

例如,Numpy的類型np.dtype(' int32 ')表示一個32位長的整數(shù)。pandas默認為64位整數(shù),我們可以節(jié)省一半的空間使用32位:

Python中Pandas庫有什么用

04
處理帶有塊的大型數(shù)據(jù)集          

pandas允許按塊(chunk)加載數(shù)據(jù)幀中的數(shù)據(jù)。因此,可以將數(shù)據(jù)幀作為迭代器處理,并且能夠處理大于可用內(nèi)存的數(shù)據(jù)幀。

Python中Pandas庫有什么用

在讀取數(shù)據(jù)源時定義塊大小和get_chunk方法的組合允許panda以迭代器的方式處理數(shù)據(jù),如上面的示例所示,其中數(shù)據(jù)幀一次讀取兩行。然后我們可以遍歷這些塊:

i = 0for a in df_iter:  # do some processing  chunk = df_iter.get_chunk()  i += 1  new_chunk = chunk.apply(lambda x: do_something(x), axis=1)  new_chunk.to_csv("chunk_output_%i.csv" % i )

它的輸出可以被提供到一個CSV文件,pickle,導出到數(shù)據(jù)庫,等等…

感謝你能夠認真閱讀完這篇文章,希望小編分享的“Python中Pandas庫有什么用”這篇文章對大家有幫助,同時也希望大家多多支持創(chuàng)新互聯(lián),關注創(chuàng)新互聯(lián)行業(yè)資訊頻道,更多相關知識等著你來學習!

文章題目:Python中Pandas庫有什么用
本文地址:http://sd-ha.com/article0/ghseoo.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站制作靜態(tài)網(wǎng)站、外貿(mào)建站、做網(wǎng)站小程序開發(fā)、響應式網(wǎng)站

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉載內(nèi)容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)

營銷型網(wǎng)站建設